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Diffusion in stationary flow from mesoscopic nonequilibrium thermodynamics

I. Santamarı´a-Holek, D. Reguera, and J. M. Rubı´
Departament de Fı´sica Fonamental-CER Fı´sica de Sistemes Complexos, Facultat de Fı´sica, Universitat de Barcelona, Diagonal 647,

08028 Barcelona, Spain
~Received 12 December 2000; published 18 April 2001!

We analyze the diffusion of a Brownian particle in a fluid under stationary flow. By using the scheme of
nonequilibrium thermodynamics in phase space, we obtain the Fokker-Planck equation that is compared with
others derived from the kinetic theory and projector operator techniques. This equation exhibits violation of the
fluctuation-dissipation theorem. By implementing the hydrodynamic regime described by the first moments of
the nonequilibrium distribution, we find relaxation equations for the diffusion current and pressure tensor,
allowing us to arrive at a complete description of the system in the inertial and diffusion regimes. The
simplicity and generality of the method we propose makes it applicable to more complex situations, often
encountered in problems of soft-condensed matter, in which not only one but more degrees of freedom are
coupled to a nonequilibrium bath.
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I. INTRODUCTION

Liquid matter when subjected to the action of extern
forces or gradients exhibits peculiar characteristics that
not manifest in the absence of those external inputs. Its
tistical mechanical properties present significant feature
the appearance of long-range correlations and phase tr
tions, or the violation of the fluctuation-dissipation theore
~see, for example, Refs.@1–7#!. The aim of nonequilibrium
statistical mechanical theories is precisely to explain the
havior of systems in such situations, away from equilibriu

These characteristics, far from being specific of pure s
stances as simple fluids@5#, also manifest in complex fluids
@8#. Typical situations of transport in liquids or liquidlik
systems involve the joint motion of liquid and solid or so
idlike phases under the action of an external input. Ma
examples can be found in systems as polymers@9#, suspen-
sions of neutral@10# and field-responsive particles@11#, and
granular media under shear flow@12#. The presence of shea
flow significantly modifies transport properties and may
duce the appearance of phases that otherwise would re
hidden~see, for instance, Refs.@13–15#!. This is the reason
why the influence of the shear flow in the dynamics is
subject that has received much attention in the last ye
specially in the domain of soft-condensed matter.

Our purpose in this paper is precisely to analyze one
the simplest examples of a system coupled to a nonequ
rium bath, whose physical realization is a set of nonintera
ing Brownian particles moving in a fluid in stationary flow
The suspended objects diffuse in and are convected by
fluid; their motion may eventually be influenced by the pre
ence of external fields. These are the basic ingredients
trolling the dynamics of the suspended phase. Since
Brownian objects are of mesoscopic nature, the dynamic
scription demands a mesoscopic treatment in terms o
probability distribution function. The evolution in time o
this quantity is governed by Fokker-Planck and Smo
chowski equations. These equations constitute the basis
mesoscopic description of the system and enable one to
tract macroscopic information from the evolution equatio
1063-651X/2001/63~5!/051106~7!/$20.00 63 0511
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for the moments of the distribution. It becomes then of p
mary importance to establish simple methods able to prov
expressions of those equations in situations outside equ
rium.

Kinetic equations of the Fokker-Planck type have be
basically derived from kinetic theory of gases using the d
fusion approximation in the Boltzmann equation@1,16,17#,
from the theory of stochastic processes through the ma
equation@18# or by means of projection operator techniqu
@19,20#. It has also been shown that these kinetic equati
can be derived from mesoscopic nonequilibrium thermo
namics~MNET! @21–28#. As in nonequilibrium thermody-
namics, the basic point of this theory consists of assum
local equilibrium, which is performed at a more basic lev
at mesoscopic level. This fact enables one to formulat
Gibbs equation in which the entropy, in accordance with
concept of Gibbs entropy, also depends on a ‘‘density’’: t
probability density. By applying the rules of nonequilibriu
thermodynamics, one obtains the entropy production
from it the corresponding linear laws between fluxes a
forces. When using these laws in the continuity~balance!
equation for the probability density one obtains the Fokk
Planck equation@21,22#. This is precisely the scheme we wi
adopt in this paper to analyze diffusion in stationary flow
both, the kinetic and the hydrodynamic regimes.

The paper is organized as follows. In Sec. II, we der
the Fokker-Planck equation describing Brownian motion u
der the presence of an arbitrary steady flow, in the fram
work of MNET. In Sec. III, we discuss the hydrodynam
description by constructing the hierarchy of moments of
distribution function accounting for the macroscopic evo
tion of the system. These equations reveal the presenc
inertial and diffusion regimes for the dynamics of the pa
ticles. In Sec. IV, we analyze the particular case of a sh
flow. The corresponding Fokker-Planck equation is co
pared with the one obtained in@29# by means of kinetic
theory. In the diffusion regime, we give explicit expressio
for the pressure tensor and the viscosity. Finally, in the d
cussion, we summarize our main results and indicate po
tial applications of the formalism we have established
soft-condensed matter systems.
©2001 The American Physical Society06-1
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I. SANTAMARÍA-HOLEK, D. REGUERA, AND J. M. RUBI´ PHYSICAL REVIEW E 63 051106
II. FOKKER-PLANCK DYNAMICS FROM MESOSCOPIC
NONEQUILIBRIUM THERMODYNAMICS

We consider a dilute suspension of spherical particles
massm immersed in a liquid phase with constant density t
acts as a heat bath. The whole system is subjected to co
tions creating a stationary flow described by the veloc
field

vW 5vW 0~rW !. ~1!

Since our main purpose is to analyze the effect of
velocity gradient on the dynamics of the particle, we w
consider isothermal conditions neglecting ‘‘viscous he
ing.’’

The mesoscopic nature of the suspended phase mak
necessary to analyze its dynamics by means of a Fok
Planck equation accounting for the evolution of the distrib
tion function, which may, in general, depend on the coor
nates and momenta necessary to specify the state of
suspended objects. Since we assume no direct interac
between particles, the Brownian ‘‘gas’’ will be described
means of the single-particle distribution functionf (rW,uW ,t),
which depends explicitly on the positionrW , particle velocity
uW , and timet.

The first step towards the obtention of the Fokker-Plan
equation is the formulation of the conservation laws for
gas of suspended particles. In the absence of external b
forces, the distribution function obeys the continuity equ
tion

] f

]t
1¹W •uW f 52

]

]uW
•JWuW , ~2!

which introduces the currentJWuW in phase space. The averag
of Eq. ~2! with respect to the particle velocityuW leads to the
macroscopic equation for the balance of mass, which ca
written in the form

dr

dt
52r¹W •vW . ~3!

Herer(rW,t) is the density of the Brownian gas, given by

r~rW,t !5mE f duW , ~4!

vW (rW,t) is the average velocity of the Brownian particles d
fined through the expression

rvW ~rW,t !5mE uW f duW . ~5!

and we have defined the total derivative as

d

dt
[

]

]t
1vW •¹W . ~6!
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Our purpose is to obtain the equation governing the e
lution of the probability densityf, therefore we need to find
out the explicit expression for the currentJWuW . To this end, we
will assume local equilibrium for which entropy variation
are given through the Gibbs equation@21,22#

ds5
1

T
de1

1

T
pdr212mE m

T
dcuW duW . ~7!

Heres(rW,t) ande(rW,t) are the entropy and total energy p
unit mass of the Brownian particles, respectively,p(rW,t) is
the hydrostatic pressure,m(uW ,rW,t) is the nonequilibrium
chemical potential per unit mass, andcuW5m f/r is the
Brownian mass fraction@21#. Notice that the term including
the chemical potential in Eq.~7! is reminiscent of the corre
sponding one for a mixture in which the different comp
nents would be specified by the continuum ‘‘index’’uW . Fol-
lowing the scheme of nonequilibrium thermodynamics@21#,
we will assume that Eq.~7! remains valid for changes in tim
and position into a mass element followed along the cen
of gravity motion of the Brownian gas.

Since the particles undergo only translational motion, a
in view of Eqs.~2!, ~3!, and~7!, the remaining conservation
law is the one for the energy. The presence of the exte
flow is responsible for the appearance in that equation of
term of ‘‘viscous heating,’’ giving rise to variations in th
temperature field. To maintain isothermal conditions, a
following previous ideas introduced in the implementation
the so-called ‘‘homogeneous shear’’@30,31#, we will assume
the existence of a local heat source capable to remove
heat generated in the process. Under this assumption,
energy of the volume elements remains constant along t
paths and its balance equation can be omitted in the su
quent analysis.

The expression of the nonequilibrium chemical poten
can be found through the Gibbs entropy postulate for
Brownian particles, written as

s52kBE cuW ln
f

f l .eq
duW 1sl .eq. ~8!

HerekB is Boltzmann’s constant andf l .eq is the local equi-
librium distribution function corresponding to the referen
state described by the local Maxwellian with respect to
stationary convective flow@1#,

f l .eq~uW ,rW,t !5e[m/kT][ mB2(1/2)(uW 2vW 0)2] . ~9!

In this expressionmB(rW,t) is the local equilibrium chemica
potential per unit mass of the Brownian particles. The lo
equilibrium entropy for the Brownian particles per unit ma
is given by

sl .eq52
m

TE cuWmB duW 1
1

T
e. ~10!

After applying the total derivative in Eqs.~7!, ~8!, and
~10!, and comparing the corresponding expressions for
6-2
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DIFFUSION IN STATIONARY FLOW FROM . . . PHYSICAL REVIEW E63 051106
time variations of the entropy, we arrive at the desired
pression for the nonequilibrium chemical potential

m5
kBT

m
ln f 1

1

2
~uW 2vW 0!2. ~11!

This expression, together with the equation for the Brown
mass fraction

d

dt
CuW 52

1

r
¹W •@~uW 2vW 0! f #2

]

]uW
•JWuW , ~12!

obtained by combining Eq.~1!, the continuity equation~2!,
and the balance of mass~3!, is now substituted into Eq.~7!.
The resulting expression is integrated by parts over the
locity space assuming that the fluxes vanish at the bou
aries. One then obtains the entropy balance equation in
form

r
ds

dt
52¹W •JW s1s, ~13!

where the entropy flux is given by

JW s52kBE ~uW 2vW 0! f ~ ln f 21!duW

2
m

2TE ~uW 2vW 0! f ~uW 2vW 0!2 duW ~14!

and the entropy production is

s52
m

TE JWu•
]m

]uW
duW 2

m

TE JW•~uW 2vW 0!•¹W vW 0 duW . ~15!

This quantity consists of two contributions of the type flu
force pair: the first one arises from the diffusion process iuW
space whereas the second is due to the presence of the
vective flow JW[(uW 2vW 0) f . Since both the contributions ar
vectors, the fluxes couple to the two forces giving rise
cross effects. Following the nonequilibrium thermodynam
rules, we can establish linear phenomenological relations
between fluxes and thermodynamic forces. Assuming lo
ity in uW space, for which only fluxes and forces with the sa
value of uW are coupled, the expressions for the currents
the following:

JWuW52
m

T
LWW uW uW•

]m

]uW
2

m

T
LWW uW rW•~uW 2vW 0!•¹W vW 0 , ~16!

JW52
m

T
LWW rWrW•~uW 2vW 0!•¹W vW 02

m

T
LWW rWuW•

]m

]uW
, ~17!

where LWW uW uW , LWW uW rW , LWW rWuW , and LWW rWrW are Onsager coefficients
These coefficients may, in general, depend on the impo
velocity gradient. In this case they satisfy generalized O
sager relations@32# in which time-reversal symmetry mus
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also be applied to the external driving. In the case we

considering, we haveLWW uW rW52LWW rWuW . Defining now the tensors

aWW 5
mLWW uW uW

f T
, jWW5

mLWW rWrW

f T
, eWW5

mLWW uW rW

f T
~18!

and using the expression for the chemical potential~11!, the
fluxes can be recast in the form

JWuW52~uW 2vW 0!•@aWW 1¹W vW 0•eWW # f 2
kBT

m
aWW •

] f

]uW
, ~19!

JW52~uW 2vW 0!•@¹vW 0•jWW2eWW # f 1
kBT

m
eWW•

] f

]uW
. ~20!

By substituting Eq.~19! into the continuity equation~2! for
the single-particle distribution function, we finally obtain

] f

]t
1¹W •uW f 5

]

]uW
•H ~uW 2vW 0!•@aWW 1¹vW 0•eWW # f 1

kBT

m
aWW •

] f

]uW
J ,

~21!

which constitutes the Fokker-Planck equation describing
evolution of the nonequilibrium single-particle distributio
function. The fact that the coefficients appearing in the eq
tion are tensors reflects the anisotropy of the system indu
by the imposed external flow. Moreover, this equation exh
its the fact that the flow breaks the Einstein relation by a
ing a term that depends on the imposed velocity gradie
This breaking constitutes a proof that the fluctuatio
dissipation theorem cannot be applied when fluctuations t
place around the steady state.

The Fokker-Planck equation we have obtained can
compared with the ones derived by means of different me
ods. In Ref. @29#, authors found a similar Fokker-Planc
equation for the particular case of a shear flow. In Sec.
we will discuss this similarity in more details. Followin
time-dependent projector-operator techniques, a Fok
Planck equation similar to ours was derived in@33# for the
translational modes of a Brownian particles moving in
flowing bath under a temperature gradient. Since diffusion
a bath under temperature gradient was studied previous
@22# in the framework of MNET, the relevant point to em
phasize here is the fact that the term including the veloc
gradient enters the Fokker-Planck equation as an exte
force, in a similar way as in the equation obtained in@33#.

III. THE HYDRODYNAMIC EQUATIONS

In the absence of direct interactions, the single-parti
distribution function provides the complete description of t
system at mesoscopic level. Macroscopically, the descrip
must be carried out in terms of the moments of the distri
tion function, which are related to the hydrodynamic field
density, momentum, and pressure tensor.

The density defined through Eq.~4! corresponds to the
zero-order moment. The first-order moment has been defi
in Eq. ~5!. The second moment centered about the aver
6-3
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velocity vW of the Brownian gas corresponds to the press
tensor

PWW 5mE ~uW 2vW !~uW 2vW ! f duW . ~22!

Finally, the third centered moment, which is related to
flux of kinetic energy and stress, is given by

QWWW 5mE ~uW 2vW !~uW 2vW !~uW 2vW ! f duW . ~23!

The set of evolution equations for these moments can
obtained by using the Fokker-Planck equation~21! in the
definitions of the conserved quantities after performing
time derivative and the required integrations in veloc
space@25#. The evolution equations for the three first m
ments are, respectively, the continuity equation

]r

]t
52¹W •rvW , ~24!

the balance of momentum

r
dvW

dt
1¹W •PWW 52r~vW 2vW 0!•CWW , ~25!

and the equation for the evolution in time of the press
tensor

d

dt
PWW 12~PWW •¹W vW !s1PWW ¹W •vW 12~PWW •CWW !s5

2kBT

m
raWW s2¹W •QWWW ,

~26!

where CWW 5@aWW 1¹W vW 0•eWW # and an uppers means symmetric
part of a tensor. In a similar way, we could derive the ev
lution equations for the higher-order moments of the dis
bution, which constitute a coupled hierarchy of hydrod
namic equations@25,34#.

Notice that in Eq.~25!, the right-hand-side term can b
identified with the hydrodynamic force exerted by the flu

on the particle withCWW playing the role of the friction con-
stant. That friction constant establishes the characteristic
laxation time scale for the velocity and it is usually ve
large. For instance, for a mesoscopic particle of radiua
;1025 cm, moving in a quiescent liquid of viscosityh
;1022P, the Stokes formula can be applied giving for t
friction constantb56pha/m;108 s21. Consequently, the
discussion of the behavior of the system may be carried
by expanding the hierarchy of evolution equations for

moments in powers ofCWW 21. From the hierarchy of moments
one can easily realize that the ith moment introduces cor

tions that are of orderCWW 2( i 21) for even moments andCWW 2 i for
the odd ones. If we drop out the terms arising from the th
and higher moments, we are neglecting corrections to

diffusion equation of orderCWW 23. Notice that in order to re-

tain CWW 23 corrections, one has to include not only the thir
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order moment equation but also the equation for the fou
moment, which is of the same order.

The set of equations~24!–~26! then govern the hydrody
namic behavior of the Brownian gas immersed in a flu
moving with velocity profilevW 0. The elements of the tenso

CWW 21 constitute characteristic time scales whose existe
motivates the separation of the dynamics into two we
differentiated regimes: an inertial regime fort!(C21) i j ,
characterized for the relaxation of the variables towards
diffusion regime, which is achieved fort@(C21) i j . Both the
regimes will be discussed in the following subsections.

A. Inertial regime

In order to discuss the inertial regime, it is convenient
rewrite Eq.~26! for the evolution of the pressure tensor in th
following way:

1

2

d

dt
PWW 1~PWW •tWW1

21!s5
kBT

m
raWW s, ~27!

where we have defined the matrix of relaxation times

tWW15@CWW 1¹W vW 1 1
2 ~¹W •vW !1WW #21

and we have neglected corrections to the diffusion equa

of ordersCWW 23 and higher. In an analogous way, from th
evolution equation for the momentum, Eq.~25!, we obtain

dJWD

dt
1JWD•tWW2

215rvW 0•CWW 2¹W •PWW , ~28!

whereJWD[rvW and

tWW25@CWW 11WW ~¹W •vW !#21

is the corresponding matrix of relaxation times.
The previous equations describe the inertial regime in

dynamics of the Brownian particles subjected to station
flow. This regime holds for times small enough compared
the characteristic relaxation times, identified with the co

ponents of the matricestWW1 andtWW2.
Our description of the inertial regime is consistent w

the generalized hydrodynamic description in which the d
fusion coefficient depends on the wave vector@35#. This
property has been shown in@25# for the case of a quiescen
liquid.

B. Diffusion regime

For times larger than any characteristic relaxation timt
@(C21) i j , the system enters the diffusion regime. In such
regime, the dynamics become well described by a Smo
chowski equation for the density distributionr in the con-
figuration space.

In order to find the Smoluchowski equation, we will fir
discuss the diffusion approximation in the evolution equ
tions for the pressure tensor~27! and the momentum~28!.
Both equations involve inertial, friction, and velocity grad
6-4
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DIFFUSION IN STATIONARY FLOW FROM . . . PHYSICAL REVIEW E63 051106
ent time scales. Fort@(C21) i j , time derivatives can be ne

glected when compared with terms proportional toCWW . Notice
also that the term¹W •vW is essentially a time derivative, a
follows from Eq.~3!, and can accordingly be neglected. Ta
ing this consideration into account, the equations for
pressure tensor and the momentum then reduce to

~PWW •CWW !s1~PWW •¹W vW !s5
kBT

m
raWW s ~29!

and

JWD5rvW 02~¹W •PWW !•CWW 21, ~30!

respectively. The first equation represents a linear se
coupled algebraic equations for the components of the p

sure tensorPWW in terms of the components of the tensorsCWW ,

¹vW , and aWW . Once the explicit expression for the pressu
tensor has been found, it must be introduced into the mom
tum equation~30! yielding the constitutive equation for th
diffusion currentJWD . The Smoluchowski equation is the
obtained after substitutingJWD into the balance of mass~24!.

In the following section, we will apply the previou
scheme to the particular case of a shear flow.

IV. DIFFUSION IN A SHEAR FLOW

Inherent to nonequilibrium thermodynamics is the fa
that it cannot provide explicit expressions for the pheno
enological ~transport! coefficients that must be borrowe
from other theories. In our case, the still unspecified qua

ties areaWW and eWW . When a specific velocity profile is given
expressions for those tensors can be obtained from the
netic theory or hydrodynamics.

The formalism developed in the previous sections is va
for an arbitrary stationary velocity field. In this section w
will focus our discussion on the particular case of Brown
motion in a shear flow. Our first task will be the identific
tion of the phenomenological coefficients. As pointed o
before, the second term on the right-hand side of Eq.~25!
can be identified with the force per unit mass exerted o

suspended particle by the host fluid whereCWW plays the role of
the friction tensor. In general, such a density force can
calculated from hydrodynamics,~see, for instance, Refs
@36,37#!. For the shear flow case, the friction coefficient co
tains, in general, linear and quadratic contributions inza,
wherez is the inverse penetration length of the perturbatio
z5(g/n)1/2, with g being the shear rate andn the kinematic
viscosity. For a Brownian particle under moderate sh
flow, the termza is very small, consequently the frictio

tensor can be approximated byCWW .b1WW . This identification

leads to the following expression for the tensoraWW :

aWW 5b1WW 2¹W vW 0•eWW . ~31!
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By introducing the previous expressions into the Fokk
Planck equation~21!, we finally obtain

] f

]t
1uW •¹W f 5

]

]uW
•H b~uW 2vW 0! f 1

kBT

m
aWW •

] f

]uW
J . ~32!

As concluded, also from Eq.~21!, the particular form of Eq.
~32! implies that the fluctuation-dissipation theorem is
longer valid when the fluid~heat bath! is sheared. Notice tha
the term that invalidates that theorem is proportional to
velocity gradient or to the inverse penetration length squa
The theorem remains applicable in the case in which
friction coefficient contains a correction proportional toz
@38#.

The Fokker-Planck equation~32! is similar to the corre-
sponding one obtained in Ref.@29# from the kinetic theory.
By expanding the collision operator in the mass ratio b
tween the fluid and Brownian particles, authors derived
Fokker-Planck equation in which the diffusion tensor co
tains a correction to the Einstein formula proportional to t
stress tensor of the fluid. Since this quantity is proportio
to the velocity gradient, we conclude that the form of t
diffusion tensor they find is similar to our expression~31!,

which allows the identification of the tensoreWW .
With the explicit form of the Fokker-Planck equation~32!

in our mind, our purpose is now to discuss the macrosco
evolution of the system. Following the procedure indicat
in Sec. III B, we find that for a shear flow, in the diffusio
regime, the expression for the Brownian pressure tensor

PWW 5
kBT

m
r@1WW 2$b21~1WW 1eWW !•¹vW 0%

s#. ~33!

From this equation, we can conclude that Brownian mot
of the particles contributes to the total pressure tensor of
suspension in two forms. The first contribution is the we
known scalar kinetic pressure given by

p5
kBT

m
r, ~34!

which is the equation of state for the ideal Brownian g

The second contribution comes from the irreversible partPWW

of the Brownian pressure tensor, which can be written in
form

PWW 52D0r@~1WW 1eWW !•¹W vW 0#0, ~35!

whereD05kBT/mb is the diffusion coefficient of a particle
when the liquid is at rest and an upper 0 means symme
traceless tensor. This last equation defines the Brownian
cosity tensor

hWW B5D0r~1WW 1eWW !, ~36!

which contains the ‘‘Brownian’’ viscosityD0r @39#, and the
contribution due to the coupling with the nonequilibriu

bath, which is proportional toeWW . Equations~35! and ~36!
account for the contributions to the irreversible part of t
6-5
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I. SANTAMARÍA-HOLEK, D. REGUERA, AND J. M. RUBI´ PHYSICAL REVIEW E 63 051106
pressure tensor and shear viscosity coefficient of the sus
sion. No contribution to the bulk viscosity has been fou
since the shear flow is incompressible.

Following the steps described previously, we can obt
the diffusion currentJWD in the limit t@(C21) i j in which Eq.
~28! has the form

JWD5rvW 02b21¹W •PWW . ~37!

Introducing the expression for the pressure tensor~33! into
the last equation, we obtain

JWD5rvW 02DWW •¹W r2r¹W •DWW . ~38!

Here we have defined the diffusion tensor as

DWW 5D0@1WW 2b21$~1WW 1eWW !•¹W vW 0%
0#. ~39!

An important consequence of this result is that the prese
of a shear flow modifies the diffusion current with respect
the case of a quiescent liquid. Substituting Eq.~38! into the
balance of mass, Eq.~24!, we finally obtain the diffusion
equation for the Brownian particle

]r

]t
52¹W •rvW 01¹W •~DWW •¹W r!1¹W •~r¹W •DWW !. ~40!

This equation is a generalization of the usual Smo
chowski equation in the sense that it contains the anisotr
diffusion coefficient~39! that depends on the imposed velo
ity gradient. For the particular case of shear flow, the vel

ity gradient is a constant, thereforeDWW does not exhibit spatia
dependence and we recover the usual Smoluchowski e
tion

]r

]t
52¹W •rvW 01¹W •~DWW •¹r!. ~41!

This equation coincides formally with the one found in R
@40#. The difference between both equations lies in the fo
of the diffusion tensor. In the cited work, author starts fro
a Fokker-Planck equation that satisfies the fluctuati
dissipation theorem. In the diffusion regime the authors fi
consistent with the approximation, that the diffusion ten
and the mobility of the Brownian particles in the fluid a
related to each other through Einstein’s formula.

V. DISCUSSION

In this paper we have analyzed the dynamics of the s
pension of Brownian particles in a nonequilibrium situati
resulting from the action of an externally imposed veloc
gradient. We have applied the method of mesoscopic n
equilibrium thermodynamics to study the dissipation
phase space related to the underlying diffusion process o
probability density of the particles.

In MNET, local equilibrium is assumed at mesoscop
level. A Gibbs equation is then proposed in which the e
tropy depends on the probability density: the pertinent d
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sity in phase space, according to the concept of Gibbs
tropy. By applying the rules of nonequilibrium
thermodynamics, one obtains the entropy production of
system, which enables one to derive the expression for
diffusion current in phase space and, consequently, to ob
the Fokker-Planck equation for the single-particle distrib
tion function. This expression exhibits violation of th
fluctuation-dissipation theorem whose origin is precisely
presence of the external gradient. This feature, commo
found in the wide class of driven-diffusion systems@4,38#,
has also been reported in slow relaxation process of gla
systems@41#.

The hydrodynamic level of description is accomplish
from the evolution equations for the first moments of t
distribution function, which can be obtained through t
Fokker-Planck equation. The time evolution of the mome
include relaxation equations for the diffusion current and
pressure tensor, whose form permits to elucidate the e
tence of inertial~short-time! and diffusion ~long-time! re-
gimes. In the diffusion regime, the mesoscopic descriptio
carried out by means of a Smoluchowski equation. In t
regime, the equations for the moments coincide with the
ferential equations of nonequilibrium thermodynamics. T
equations for the moments obtained from the Fokker-Pla
equation in the framework of MNET extend the domain
applicability of nonequilibrium thermodynamics to short
time scales. These equations can be reformulated in term
transport coefficients that depend on the wave vector, in
cordance with generalized hydrodynamics@35#.

Our results can be compared with others obtained pr
ously using different theories. The Fokker-Planck equat
we have derived is similar to the one proposed in@29# for the
case of a shear flow. As in our case, these authors show
when the system is sheared, the diffusion coefficient is
longer given by Stokes-Einstein law. It contains a correct
proportional to the pressure tensor, which is basically of
same nature as the one we obtain, i.e., proportional to
velocity gradient. This fact clearly shows violation of th
fluctuation-dissipation theorem due to the presence of
external input necessary to maintain the stationary st
Similar conclusions are obtained in@33#, where the genera
case in which a stationary flow and a temperature grad
act simultaneously is studied by means of time-depend
projector-operator techniques.

Having discussed the comparison of our results with o
ers coming from statistical mechanical theories, it remains
analyze them in the framework of thermodynamical theor
dealing with systems outside equilibrium, in particular, w
extended irreversible thermodynamics. This theory provi
hydrodynamic equations that also contain relaxation te
for the pressure tensor and the diffusion current. Along
analysis of this and other cases of systems outside equ
rium ~see Refs.@24,25,27,42#!, we have shown that by sim
ply using nonequilibrium thermodynamics or its extension
the mesoscopic domain~MNET!, we are able to completely
characterize the evolution of systems outside equilibriu
This fact questions the need of using generalized entro
@43# depending on nonthermodynamic variables: the flux
which constitute the cornerstone of extended irrevers
6-6
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thermodynamics. The application of the well-establish
nonequilibrium thermodynamics postulates as indicated
@21#, suffices to provide a general scheme under which n
equilibrium processes of macroscopic and mesoscopic na
can be treated.

Far from being specific to the case of a suspension
noninteracting Brownian particles, we have treated in t
paper, the method we have presented could systematical
applied to analyze the dynamics of soft-condensed ma
systems under shear flow. For example, the case in w
direct and hydrodynamic interactions among particles
come important can be worked out along the lines indica
in @24# for the case of a quiescent liquid. If the suspend
objects are deformable or need additional parameters to c
acterize their state, as may occur in polymers@9# or liquid
crystals@42,44#, the set of variables of the distribution func
l
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tion has to be enlarged. One would obtain the correspond
Fokker-Planck equation and from it the evolution equatio
for the moments that define the hydrodynamic or generali
hydrodynamic regimes. In all these cases, kinetic and hyd
dynamic equations can be derived following the method
mesoscopic nonequilibrium thermodynamics.
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