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Diffusion in stationary flow from mesoscopic nonequilibrium thermodynamics
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We analyze the diffusion of a Brownian particle in a fluid under stationary flow. By using the scheme of
nonequilibrium thermodynamics in phase space, we obtain the Fokker-Planck equation that is compared with
others derived from the kinetic theory and projector operator techniques. This equation exhibits violation of the
fluctuation-dissipation theorem. By implementing the hydrodynamic regime described by the first moments of
the nonequilibrium distribution, we find relaxation equations for the diffusion current and pressure tensor,
allowing us to arrive at a complete description of the system in the inertial and diffusion regimes. The
simplicity and generality of the method we propose makes it applicable to more complex situations, often
encountered in problems of soft-condensed matter, in which not only one but more degrees of freedom are
coupled to a nonequilibrium bath.
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[. INTRODUCTION for the moments of the distribution. It becomes then of pri-
mary importance to establish simple methods able to provide
Liquid matter when subjected to the action of external€Xpressions of those equations in situations outside equilib-
forces or gradients exhibits peculiar characteristics that d§um- i
not manifest in the absence of those external inputs. Its sta- Kinetic equations of the Fokker-Planck type have been

tistical mechanical properties present significant features asically derived from kinetic theory of gases using the dif-

the appearance of long-range correlations and phase tran :ij-s'on approximation in the Boltzmann equatifh16,17,

tions, or the violation of the fluctuation-dissipation theorem om the theory of stochastic processes through the master
’ e A equation[18] or by means of projection operator techniques
(see, for example, Ref§l—-7]). The aim of nonequilibrium d [18] y broj b 9

tical hanical theores | ol lain th [19,20. It has also been shown that these kinetic equations
statistical mechanical theories is precisely to explain the bezan pe derived from mesoscopic nonequilibrium thermody-

havior of systems in such situations, away from equnib”um-namics(MNET) [21-28. As in nonequilibrium thermody-
These characteristics, far from being specific of pure subpamics, the basic point of this theory consists of assuming
stances as simple fluid§], also manifest in complex fluids |ocal equilibrium, which is performed at a more basic level:
[8]. Typical situations of transport in liquids or liquidlike at mesoscopic level. This fact enables one to formulate a
systems involve the joint motion of liquid and solid or sol- Gibbs equation in which the entropy, in accordance with the
idlike phases under the action of an external input. Manyconcept of Gibbs entropy, also depends on a “density”: the
examples can be found in systems as polyni@fssuspen-  probability density. By applying the rules of nonequilibrium
sions of neutra[10] and field-responsive particl¢$l], and thermodynamics, one obtains the entropy production and
granular media under shear flgu2]. The presence of shear from it the corresponding linear laws between fluxes and
flow significantly modifies transport properties and may in-forces. When using these laws in the continuibalance
duce the appearance of phases that otherwise would remagguation for the probability density one obtains the Fokker-
hidden(see, for instance, Refgl3—-15). This is the reason Planck equatiofi21,22. This is precisely the scheme we will
why the influence of the shear flow in the dynamics is aadopt in this paper to analyze diffusion in stationary flow in
subject that has received much attention in the last year$oth, the kinetic and the hydrodynamic regimes.
specially in the domain of soft-condensed matter. The paper is organized as follows. In Sec. Il, we derive
Our purpose in this paper is precisely to analyze one ofhe Fokker-Planck equation describing Brownian motion un-
the simplest examples of a system coupled to a nonequilibder the presence of an arbitrary steady flow, in the frame-
rium bath, whose physical realization is a set of noninteractwork of MNET. In Sec. Ill, we discuss the hydrodynamic
ing Brownian particles moving in a fluid in stationary flow. description by constructing the hierarchy of moments of the
The suspended objects diffuse in and are convected by thdistribution function accounting for the macroscopic evolu-
fluid; their motion may eventually be influenced by the pres-tion of the system. These equations reveal the presence of
ence of external fields. These are the basic ingredients comertial and diffusion regimes for the dynamics of the par-
trolling the dynamics of the suspended phase. Since thticles. In Sec. IV, we analyze the particular case of a shear
Brownian objects are of mesoscopic nature, the dynamic ddtow. The corresponding Fokker-Planck equation is com-
scription demands a mesoscopic treatment in terms of pared with the one obtained i{f29] by means of kinetic
probability distribution function. The evolution in time of theory. In the diffusion regime, we give explicit expressions
this quantity is governed by Fokker-Planck and Smolu-for the pressure tensor and the viscosity. Finally, in the dis-
chowski equations. These equations constitute the basis foraission, we summarize our main results and indicate poten-
mesoscopic description of the system and enable one to ekial applications of the formalism we have established to
tract macroscopic information from the evolution equationssoft-condensed matter systems.
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Il. FOKKER-PLANCK DYNAMICS FROM MESOSCOPIC Our purpose is to obtain the equation governing the evo-
NONEQUILIBRIUM THERMODYNAMICS lution of the probability density, therefore we need to find

We consider a dilute suspension of spherical particles ofUt the explicit expression for the currehi. To this end, we
massmimmersed in a liquid phase with constant density thatVill @ssume local equilibrium for which entropy variations
acts as a heat bath. The whole system is subjected to condi'® given through the Gibbs equatifit, 22
tions creating a stationary flow described by the velocity

. 1 1 M -
field — = -1_ = se-
oS T6e+ Tp5p mJ Técudu. )

) =0o(r). 1 - -
v=vo(r) @ Heres(r,t) ande(r,t) are the entropy and total energy per

Since our main purpose is to analyze the effect of theunit mass of the Brownian particles, respectivedyr,t) is
velocity gradient on the dynamics of the particle, we will the hydrostatic pressureu(u,r,t) is the nonequilibrium
consider isothermal conditions neglecting “viscous heatchemical potential per unit mass, amg=mf/p is the
ing.” Brownian mass fractiofi21]. Notice that the term including

The mesoscopic nature of the suspended phase makesttie chemical potential in Eq7) is reminiscent of the corre-
necessary to analyze its dynamics by means of a Fokkesponding one for a mixture in which the different compo-
Planck equation accounting for the evolution of the distribu-nents would be specified by the continuum “index’” Fol-

tion function, which may, in general, depend on the coordi-gying the scheme of nonequilibrium thermodynani2a],
nates and momenta necessary to specify the state of thge will assume that Eq7) remains valid for changes in time
suspended objects. Since we assume no direct interactiogpd position into a mass element followed along the center
between particles, the Brownian “gas” will be described by of gravity motion of the Brownian gas.

means of the single-particle distribution functidtr,u,t), Since the particles undergo only translational motion, and

which depends explicitly on the position, particle velocity ~ in view of Egs.(2), (3), and(7), the remaining conservation
4. and timet. law is the one for the energy. The presence of the external

The first step towards the obtention of the Fokker-PIancR‘lOW is responsible for the appearance in that equation of the

equation is the formulation of the conservation laws for thele'm Of “viscous heating,” giving rise to variations in the

gas of suspended particles. In the absence of external bo@ mperature field. To maintain isothermal conditions, and

forces, the distribution function obeys the continuity equa-0!loWing previous ideas introduced in the implementation of
tion the so-called “homogeneous shedB0,31], we will assume

the existence of a local heat source capable to remove the
of 3 heat generated in the process. Undgr this assumption, the
—+V-uf=——-J;, (2)  energy of the volume elements remains constant along their
ot au paths and its balance equation can be omitted in the subse-
quent analysis.
which introduces the curredy; in phase space. The average ~ The expression of the nonequilibrium chemical potential
of Eq. (2) with respect to the particle veloci@leads tothe ©¢a@n" be found through the Gibbs entropy postulate for the

macroscopic equation for the balance of mass, which can pRrownian particles, written as
written in the form ¢
[ A —— AN l.eq

dp o S ka ciln fIqudu+s : (8
T pV-v. €]
Herekg is Boltzmann’s constant antl-¢9 is the local equi-
librium distribution function corresponding to the reference
state described by the local Maxwellian with respect to the

stationary convective floyl],

Herep(F,t) is the density of the Brownian gas, given by

rty=m| fdu, 4 .
Py J @ fl-e9( 0,1 t) = el MKl kg = (U (=v0)?] 9)
v(r,t) is the average velocity of the Brownian particles de-|, this expressionug(r,t) is the local equilibrium chemical
fined through the expression potential per unit mass of the Brownian particles. The local
equilibrium entropy for the Brownian particles per unit mass
piF.=m | it di (5) isgiven by
. . . l.eq m - - 1
and we have defined the total derivative as s*=—7| Ciupdut e (10
i:iﬂ;ﬁ ) After applying the total derivative in Eqg7), (8), and
dt ot ' (10), and comparing the corresponding expressions for the
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time variations of the entropy, we arrive at the desired exalso be applied to the external driving. In the case we are

pression for the nonequilibrium chemical potential considering, we haVéJFZ _ EFG- Defining now the tensors

BN PR 11
p=-in +§(U—Uo)- (11

(18

This expression, together with the equation for the Brownian : . . .
mass fraction and using the expression for the chemical potertfid), the

fluxes can be recast in the form

keT = of

d 1. Jd -
C»:——V. l:i—_) f ——.,-JQ, 12 > - - 3 > > 3
i [(u=vo)f]=55 Ju (12) Ji=—(U-vo) [a+ Vo] f-"a-—s, (19
u

e p
obtained by combining EqJ1), the continuity equatiori2),
and the balance of ma$8), is now substituted into Eq7). . .. o s s kpT= of
The resulting expression is integrated by parts over the ve- J=—=(U—vg)-[Vvg-é—€] T+ e T (20)
locity space assuming that the fluxes vanish at the bound- Ju

aries. One then obtains the entropy balance equation in tk@y substituting Eq(19) into the continuity equatior2) for

form the single-patrticle distribution function, we finally obtain
ds V.J+ (13)  of ] kgT = of
p— = — +Jg 0-, (RN - - 3 - 3 B 3
dt —+V.uf=—. —0n)- . = 4 —
e +V.uf Y (u—vg)-[a+Vuvg-€] T+ et} <l
where the entropy flux is given by (22)
. . . which constitutes the Fokker-Planck equation describing the
JSI—kBJ (U=vo)f(Inf-1)du evolution of the nonequilibrium single-particle distribution
function. The fact that the coefficients appearing in the equa-
- s e, e tion are tensors reflects the anisotropy of the system induced
o7 (U=vo)f(u—vo)“du (14 py the imposed external flow. Moreover, this equation exhib-
its the fact that the flow breaks the Einstein relation by add-
and the entropy production is ing a term that depends on the imposed velocity gradient.

This breaking constitutes a proof that the fluctuation-

m{. du - M( o - - o . dissipation theorem cannot be applied when fluctuations take
o= ?f Jur ?dU— ?f J-(U—vp)-Vuodu. (15  place around the steady state.

u The Fokker-Planck equation we have obtained can be

This quantity consists of two contributions of the type flux- compared with the ones derived by means of different meth-
- ods. In Ref.[29], authors found a similar Fokker-Planck

force pair: the first one arise_s from the diffusion process in equation for the particular case of a shear flow. In Sec. IV,
space whereas the second is due to the presence of the cQfis will discuss this similarity in more details. Following
vective flowJ=(u—wvg)f. Since both the contributions are time-dependent projector-operator techniques, a Fokker-
vectors, the fluxes couple to the two forces giving rise toPlanck equation similar to ours was derived[88] for the
cross effects. Following the nonequilibrium thermodynamicstiranslational modes of a Brownian particles moving in a
rules, we can establish linear phenomenological relationshipowing bath under a temperature gradient. Since diffusion in
between fluxes and thermodynamic forces. Assuming locala bath under temperature gradient was studied previously in
ity in U space, for which only fluxes and forces with the same 22] in the framework of MNET, the relevant point to em-

value of U are coupled, the expressions for the currents ar@hasize here is the fact that the term including the velocity
the following: gradient enters the Fokker-Planck equation as an external

force, in a similar way as in the equation obtained38].

> m = a,LL m = - > > >
Ji=— T LJJ-E— T Lir-(u=vg)-Vog, (16) IIl. THE HYDRODYNAMIC EQUATIONS
In the absence of direct interactions, the single-particle
R Mms - - . M= du distribution function provides the complete description of the
J=- T Lir-(u—vg)-Vug— T Lrg-—=, (17  system at me_soscop_ic level. Macroscopically, the des_cription
au must be carried out in terms of the moments of the distribu-

R R R . tion function, which are related to the hydrodynamic fields:
where L;;, Lgr, L7, and L;; are Onsager coefficients. density, momentum, and pressure tensor.
These coefficients may, in general, depend on the imposed The density defined through E¢4) corresponds to the
velocity gradient. In this case they satisfy generalized Onzero-order moment. The first-order moment has been defined
sager relation$32] in which time-reversal symmetry must in Eq. (5). The second moment centered about the average
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velocity v of the Brownian gas corresponds to the pressuré@rder moment equation but also the equation for the fourth
tensor moment, which is of the same order.

The set of equation€4)—(26) then govern the hydrody-
namic behavior of the Brownian gas immersed in a fluid

P= mj (u=v)(u=v)fdu. (22) moving with velocity profiIeJO. The elements of the tensor

Finally, the third centered moment, which is related to theczil. constitute charac_teristic time scale_s whose existence

flux of kinetic energy and stress, is given by motivates the se.para'Flon O.f th_e dyna}mlcs Into EVYO well-
differentiated regimes: an inertial regime fo(C™-);;,

5 R, characterized for the relaxation of the variables towards the
Q=mf (u=v)(u—v)(u—o)fdu. (23 diffusion regime, which is achieved f0}>(C‘1)ij . Both the
regimes will be discussed in the following subsections.

The set of evolution equations for these moments can be . .
obtained by using the Fokker-Planck equati@i) in the A. Inertial regime
definitions of the conserved quantities after performing the |n order to discuss the inertial regime, it is convenient to

time derivative and the required integrations in velocity rewrite Eq.(26) for the evolution of the pressure tensor in the
space[25]. The evolution equations for the three first mo- following way:
ments are, respectively, the continuity equation

| o

kT =,

= 2 2 9.5 Kel
P+(P-7,7)%= P (27)

N[ =

P Sps 24
&t_ *pv, ( )

o

t

where we have defined the matrix of relaxation times
the balance of momentum - . . .
Tl=[C+Vv+%(V~v)1]7l

>

+V.P= —p(J—JO)-é, (25 and we have neglected corrections to the diffusion equation

of ordersC 2 and higher. In an analogous way, from the
and the equation for the evolution in time of the pressureevolution equation for the momentum, EQ5), we obtain
tensor

Pt

d\]D - 2 3 >

Ao oo 2keT s o= 5t HIo 72 =pvoC-V P, (28)
PH2(P-Vu)+ PV 5 +2(P-C)'=—T=pa*-¥ Q,
(26)  whereJp=pv and
where C=[a+ V0, €] and an uppes means symmetric 7,=[C+1(V-0)] L

part of a tensor. In a similar way, we could derive the evo- . ] o
lution equations for the higher-order moments of the distri-'S the corresponding matrix of relaxation times.

bution' which constitute a Coup]ed hierarchy of hydrody_ The preViOUS equations describe the inertial regime in the
namic equation$25,34. dynamics of the Brownian particles subjected to stationary

Notice that in EqQ.(25), the right-hand-side term can be flow. This regime holds for times small enough compared to
identified with the hydrodynamic force exerted by the fluid the characteristic relaxation times, identified with the com-

3 3
on the particle withC playing the role of the friction con- Ponents of the matrices, and r. o _ .
stant. That friction constant establishes the characteristic re- Our description of the inertial regime is consistent with
laxation time scale for the velocity and it is usually very the generalized hydrodynamic description in which the dif-
large. For instance, for a mesoscopic particle of radius fusion coefficient depends on the wave vect8b|. This
~107% cm, moving in a quiescent liquid of viscosity property has been shown j25] for the case of a quiescent
~1072P, the Stokes formula can be applied giving for the liquid.
friction constant@=6mna/m~10° s™1. Consequently, the
discussion of the behavior of the system may be carried out B. Diffusion regime

by expanding the hlezrarchy of evolution equations for the 4 times larger than any characteristic relaxation time
moments in powers o ~1. From the hierarchy of moments, >(C*1)ij , the system enters the diffusion regime. In such a
one can easily realize that the ith moment introduces correadegime, the dynamics become well described by a Smolu-
tions that are of orde® (1 for even moments and~' for  chowski equation for the density distributignin the con-

the odd ones. If we drop out the terms arising from the thirdfiguration space.

and higher moments, we are neglecting corrections to the. !N order to find the Smoluchowski equation, we will first
discuss the diffusion approximation in the evolution equa-

3
diffusion equation of orde€ 3. Notice that in order to re-
3 q . . ' tions for th_e pressure tgns(ﬁ?) a_nd_ the momentu_n(l28). _
tain C™* corrections, one has to include not only the third- Both equations involve inertial, friction, and velocity gradi-
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ent time scales. FdJ»(Cfl)ij , time derivatives can be ne- By introducing the previous expressions into the Fokker-
glected when compared with terms proportionaCtaNotice ~ Planck equatiori21), we finally obtain

also that the ternV v is essentially a time derivative, as

, of . . 9 I gT = of
follows from Eq.(3), and can accordingly be neglected. Tak- —+u-Vi=—-{ B(u—vg)f+ —a-—;. (32
ing this consideration into account, the equations for the au m  au

ressure tensor and the momentum then reduce to .
P As concluded, also from E@21), the particular form of Eq.

2 = s oo kgT = (32 implies that the fluctuation-dissipation theorem is no
(P-C)*+(P- VU)SZFPQS (29 longer valid when the fluidheat bathis sheared. Notice that

the term that invalidates that theorem is proportional to the

velocity gradient or to the inverse penetration length squared.

and The theorem remains applicable in the case in which the
friction coefficient contains a correction proportional fo

I 8B .A1 [38].
Jo=pvo=(V-P)-C4, (30 The Fokker-Planck equatiof82) is similar to the corre-

. i ) ) sponding one obtained in RgR29] from the kinetic theory.
respectively. The first equation represents a linear set oéy expanding the collision operator in the mass ratio be-
coupled algebraic equations for the components of the pregyeen the fluid and Brownian particles, authors derived a
sure tensong in terms of the components of the tensﬁsrs Fokker-Planck equation in which the diffusion tensor con-
etains a correction to the Einstein formula proportional to the
pptress tensor of the fluid. Since this quantity is proportional
to the velocity gradient, we conclude that the form of the
diffusion tensor they find is similar to our expressi(s1),

Vv, and a. Once the explicit expression for the pressur

tum equation(30) yielding the constitutive equation for the
diffusion currentJy. The Smoluchowski equation is then

obtained after substitutindp, into the balance of magg4).
In the following section, we will apply the previous
scheme to the particular case of a shear flow.

which allows the identification of the tenser

With the explicit form of the Fokker-Planck equati¢3R)
in our mind, our purpose is now to discuss the macroscopic
evolution of the system. Following the procedure indicated
in Sec. IlI B, we find that for a shear flow, in the diffusion
IV. DIFFUSION IN A SHEAR FLOW regime, the expression for the Brownian pressure tensor is

Inherent to nonequilibrium thermodynamics is the fact = kgT = s =2 .
that it cannot provide explicit expressions for the phenom- P= Wp[l—{ﬁfl(lﬂL €)-Voo}®]. (33
enological (transport coefficients that must be borrowed
from other theories. In our case, the still unspecified quantiFrom this equation, we can conclude that Brownian motion
ties area and e. When a specific velocity profile is given, Of the particles contributes to the total pressure tensor of the

expressions for those tensors can be obtained from the kguspension in two forms. The first contribution is the well-

netic theory or hydrodynamics. known scalar kinetic pressure given by
The formalism developed in the previous sections is valid T
for an arbitrary stationary velocity field. In this section we p= ip (34)
m P

will focus our discussion on the particular case of Brownian
motion in a shear flow. Our first task will be the identifica-
tion of the phenomenological coefficients. As pointed ou 5
before, the second term on the right-hand side of 8§  The second contribution comes from the irreversible phrt
can be identified with the force per unit mass exerted on @f the Brownian pressure tensor, which can be written in the
form

which is the equation of state for the ideal Brownian gas.

suspended patrticle by the host fluid Whé@lays the role of
the friction tensor. In general, such a density force can be
calculated from hydrodynamicqsee, for instance, Refs.
[36,37). For the shear flow case, the friction coefficient con-
tains, in general, linear and quadratic contributions{&

i=—Dgp[(I+€)-Vu,l°, (35

whereDy=kgT/mp is the diffusion coefficient of a particle

when the liquid is at rest and an upper 0 means symmetric

where{ is the inverse penetration length of the perturbation,aceless tensor. This last equation defines the Brownian vis-
£=(ylv)Y? with y being the shear rate andthe kinematic cosity tensor

viscosity. For a Brownian particle under moderate shear

H 1 1 3 3 3
flow, the term{a is very smallz, conzsequently the friction 7e=Dop(1+e), (36)
tensor can be approximated I8~=g1. This identification ) . ) ) .
which contains the “Brownian” viscosityD 4p [39], and the
contribution due to the coupling with the nonequilibrium

. s s bath, which is proportional ta. Equations(35) and (36)
a=B1-Vugy-e. (31) account for the contributions to the irreversible part of the

leads to the following expression for the tensor
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pressure tensor and shear viscosity coefficient of the suspesity in phase space, according to the concept of Gibbs en-
sion. No contribution to the bulk viscosity has been foundtropy. By applying the rules of nonequilibrium
since the shear flow is incompressible. thermodynamics, one obtains the entropy production of the
Following the steps described previously, we can obtainsystem, which enables one to derive the expression for the
the diffusion currentl in the Iimitt>(C‘1)ij in which Eq.  diffusion current in phase space and, consequently, to obtain
(28) has the form the Fokker-Planck equation for the single-particle distribu-
) ) . tion function. This expression exhibits violation of the
Jo=pvo—pB V-P. (37)  fluctuation-dissipation theorem whose origin is precisely the
presence of the external gradient. This feature, commonly
Introducing the expression for the pressure ten88y into  found in the wide class of driven-diffusion systei#s38],

the last equation, we obtain has also been reported in slow relaxation process of glassy
. L Lo systemg41].
Jo=pvo—D-Vp—pV-D. (39 The hydrodynamic level of description is accomplished
from the evolution equations for the first moments of the
Here we have defined the diffusion tensor as distribution function, which can be obtained through the
. R . . Fokker-Planck equation. The time evolution of the moments
D=Do[1- B Y (1+¢€)-Vuo}°]. (39 include relaxation equations for the diffusion current and the

pressure tensor, whose form permits to elucidate the exis
An important consequence of this result is that the presencence of inertial(short-time¢ and diffusion (long-time) re-
of a shear flow modifies the diffusion current with respect togimes. In the diffusion regime, the mesoscopic description is
the case of a quiescent liquid. Substituting E2B) into the  carried out by means of a Smoluchowski equation. In this
balance of mass, Eq24), we finally obtain the diffusion regime, the equations for the moments coincide with the dif-
equation for the Brownian particle ferential equations of nonequilibrium thermodynamics. The
) equations for the moments obtained from the Fokker-Planck
P = - s 2 = s 2 equation in the framework of MNET extend the domain of
ot "V protVe(D-Vp)+V-(pV-D). (40 agplicability of nonequilibrium thermodynamics to shorter
time scales. These equations can be reformulated in terms of
This equation is a generalization of the usual Smolutransport coefficients that depend on the wave vector, in ac-
chowski equation in the sense that it contains the anisotropigordance with generalized hydrodynami@s).
diffusion coefficient(39) that depends on the imposed veloc-  Qur results can be compared with others obtained previ-
ity gradient. For the particular case of shear flow, the velocously using different theories. The Fokker-Planck equation
ity gradient is a constant, therefobedoes not exhibit spatial We have derived is similar to the one proposef| for the
dependence and we recover the usual Smoluchowski equgase of a shear flow. As in our case, these authors show that
tion when the system is sheared, the diffusion coefficient is no
longer given by Stokes-Einstein law. It contains a correction
- - - o= proportional to the pressure tensor, which is basically of the
ot —V-pvot+V-(D-Vp). (41) same nature as the one we obtain, i.e., proportional to the
velocity gradient. This fact clearly shows violation of the
This equation coincides formally with the one found in Ref. fluctuation-dissipation theorem due to the presence of the
[40]. The difference between both equations lies in the fornExternal input necessary to maintain the stationary state.
of the diffusion tensor. In the cited work, author starts fromSimilar conclusions are obtained B3], where the general
a Fokker-Planck equation that satisfies the fluctuationcase in which a stationary flow and a temperature gradient
dissipation theorem. In the diffusion regime the authors findact simultaneously is studied by means of time-dependent
consistent with the approximation, that the diffusion tensorrojector-operator technigues.
and the mobility of the Brownian particles in the fluid are  Having discussed the comparison of our results with oth-

ap

related to each other through Einstein’s formula. ers coming from statistical mechanical theories, it remains to
analyze them in the framework of thermodynamical theories
V. DISCUSSION dealing with systems outside equilibrium, in particular, with

extended irreversible thermodynamics. This theory provides
In this paper we have analyzed the dynamics of the sushydrodynamic equations that also contain relaxation terms
pension of Brownian particles in a nonequilibrium situationfor the pressure tensor and the diffusion current. Along our
resulting from the action of an externally imposed velocity analysis of this and other cases of systems outside equilib-
gradient. We have applied the method of mesoscopic nordum (see Refs[24,25,27,48, we have shown that by sim-
equilibrium thermodynamics to study the dissipation inply using nonequilibrium thermodynamics or its extension to
phase space related to the underlying diffusion process of thtae mesoscopic domaiMNET), we are able to completely
probability density of the particles. characterize the evolution of systems outside equilibrium.
In MNET, local equilibrium is assumed at mesoscopicThis fact questions the need of using generalized entropies
level. A Gibbs equation is then proposed in which the en{43] depending on nonthermodynamic variables: the fluxes,
tropy depends on the probability density: the pertinent denwhich constitute the cornerstone of extended irreversible
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thermodynamics. The application of the well-establishedion has to be enlarged. One would obtain the corresponding
nonequilibrium thermodynamics postulates as indicated ifFokker-Planck equation and from it the evolution equations
[21], suffices to provide a general scheme under which nonfor the moments that define the hydrodynamic or generalized
equilibrium processes of macroscopic and mesoscopic natutgdrodynamic regimes. In all these cases, kinetic and hydro-
can be treated. dynamic equations can be derived following the method of

Far from being specific to the case of a suspension ofnesoscopic nonequilibrium thermodynamics.
noninteracting Brownian particles, we have treated in this

paper, the method we have presented could systematically be
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